Open problems in wavelet theory

Marcin Bownik

University of Oregon, USA

Frame Theory and Exponential Bases

June 4–8, 2018 ICERM, Brown University, Providence, RI

Suppose ψ is an orthonormal wavelet such that ψ belongs to the Schwartz class. Is $\hat{\psi}(\xi)$ necessarily compactly supported?

□→ < □→ < □→</p>

Does there exist a Riesz wavelet ψ for

$$H^2(\mathbb{R}) = \{f \in L^2(\mathbb{R}) : \hat{f}(\xi) = 0 \quad \text{for } \xi \leq 0\}$$

such that ψ belongs to the Schwartz class?

< ≣ >

Is it true that for any orthonormal wavelet $\psi \in L^2(\mathbb{R})$, there exists an MSF wavelet ψ_0 such that such that supp $\hat{\psi}_0 \subset \operatorname{supp} \hat{\psi}$?

Is the collection of all orthonormal wavelets (or Parseval wavelets or Riesz wavelets) in $L^2(\mathbb{R})$ pathwise connected in $L^2(\mathbb{R})$ norm?

白 ト く ヨ ト く ヨ ト

Is the collection of all Riesz wavelets dense in $L^2(\mathbb{R})$?

□ > 《 E > 《 E >

For a Parseval wavelet ψ define spaces

$$V_i(\psi) = \overline{\operatorname{span}}\{\psi_{j,k} : j < i, k \in \mathbb{Z}\}, \qquad i \in \mathbb{Z}.$$

Is it true that that

$$\bigcap_{j\in\mathbb{Z}}V_j(\psi)=\{0\}.$$

< ∃ >

Simple question that nobody has bothered to answer

MB, Weber (2003)

For what values of $\pi/4 < b \le \pi/3$, is ψ_b a frame wavelet, where $\hat{\psi}_b = \mathbf{1}_{(-2\pi,-b)\cup(b,2\pi)}$?

・回 ・ ・ ヨ ・ ・ ヨ ・ …

2

Simple question that nobody has bothered to answer

MB, Weber (2003)

For what values of $\pi/4 < b \le \pi/3$, is ψ_b a frame wavelet, where $\hat{\psi}_b = \mathbf{1}_{(-2\pi,-b)\cup(b,2\pi)}$?

Range of b	Property of ψ_b	Duals of ψ_b	$V_0(\psi_b)$
<i>b</i> = 0	not a frame wavelet	no duals exist	not SI
$0 < b \leq \pi/4$	frame wavelet (not Riesz)	no affine duals exist	SI
$\pi/3 < b < 2\pi/3$	not a frame wavelet	no duals exist	SI
$2\pi/3 \le b < \pi$	biorthogonal Riesz wavelet	canonical affine dual exists (=biorthogonal Riesz wavelet)	SI
$b = \pi$	orthonormal wavelet	canonical affine dual exists (=orthonormal wavelet)	SI
$\pi < b \leq 2\pi$	not a frame wavelet	no duals exist	SI

・回 ・ ・ ヨ ・ ・ ヨ ・ …

2

Suppose ψ is Bessel wavelet with bound < 1. Does there exist ψ_1 such that the wavelet system generated by ψ and ψ_1 is a Parseval wavelet?

< ∃ >

For what dilations $A \in GL_n(\mathbb{R})$ and lattices $\Gamma \subset \mathbb{R}^n$, there exist an orthonormal wavelet (or an MSF wavelet) associated with (A, Γ) ?

同 と く ヨ と く ヨ と

Does Calderón's formula

$$\sum_{j\in\mathbb{Z}}|\hat{\psi}((A^{\mathcal{T}})^{j}\xi)|^{2}=1$$
 for a.e. $\xi\in\mathbb{R}^{n}$

hold for orthonormal (or Parseval) wavelets associated with (A, Γ) ?

→ 문 → 문

Do Schwartz class wavelets exist for integer expansive dilations A and lattice $\Gamma = \mathbb{Z}^n$?

/⊒ > < ≣ >

- ▲ 글 ▶ - 글

For what expansive dilations do there exist well-localized wavelets (possibly with multiple generators)?

白 ト く ヨ ト く ヨ ト